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The heat resistance of a batch of microorganisms
exposed at a particular lethal temperature frequently
is expressed by a parameter D (or Z) that denotes the
time in minutes required to reduce the number of
viable organisms present at any time by 90 per cent.
Use of this parameter rests on the negative exponential
survival rule that is observed to hold at least approxi-
mately; that is, on

N = No.l0-(tID) = No e-kt (1)

where No is the number of viable organisms at zero
time, N is the number surviving at time t (in minutes),
and e is the base of natural logarithms (2.718...).
The decimal reduction time D is related to the sur-
vival-rate parameter k by

D = loge 10/k = 2.3026/k. (2)

N frequently is estimated by a binomial count; that
is, by the numbers of sterile and viable samples in
groups that are exposed for various periods at the
lethal temperature. An estimate of N, i, can be cal-
culated for a particular period by the relationship

N, = log. (ni/ri) (3)

where ni is the number of samples for the i'th period
that are incubated and ri is the number that prove to
be sterile. Stumbo et al. (1950) justified the use of (3)
by reference to the Halvorson-Ziegler formula for the
dilution count, which is identical with (3). Both ap-
plications rest on the Poisson probability distribution
for events that occur with low frequencies and thus (3)
is valid for the small proportions of organisms that
survive a period of severe heating as well as for a
conventional dilution count. Stumbo et al. suggested
that values for D be calculated by (3) for each heating
period that achieved sterilization of some but not all
of the samples, and averaged to give an estimate of
D, b... . At any given period

ti

logio No - log1o loge ()
(4)2.3026 ti

(ni)

Then

funw = L. E Di
j i=1

(5)

where j is the number of periods calculated. This
method of estimation may be called the "unweighted
average D for individual times" method or, more
simply, the "unweighted average" method.
D values calculated by this method were shown by

Reynolds and Lichtenstein (1952) to increase with
increasing periods of heating, and the effect was in-
vestigated further by Pflug and Esselen (1954). This
effect appears to cast doubt on our understanding of
the survival-time relationship in the exposure of bac-
terial spores to lethal heat; thus, Reynolds and Licht-
enstein suggested that the effect gives evidence
against an exponential survival relationship, and Pflug
and Esselen referred in general terms to a discrepancy
between "quantitative counting" (plate counts?) andRv.

It is shown in this paper that the effect arises from
a systematic bias in the unweighted average method
of estimation. Unbiased methods are illustrated for
the estimation of D values where binomial counts are
used.

THE PROBABILITY DISTRIBUTION OF
STERILE SAMPLES

Let P be the probability that a particular sample
will be sterile; it will be related to the period of heating.
The probability that a particular organism will sur-
vive being II = N/No, the probability that it will
not survive in this sample is

(6)1 -N 1 -e-kt
No

by (1); therefore the probability that none of the No
organisms will survive (which is the probability of a
sterile sample) is

(7)P= (1 - No) = (1 - e-kt)No
Then

loge P = No log6 (1 - e-k) (8)
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FIG. 1. Probability distribution curves for r = 0 to r = 6
sterile samples in groups of six, where the probability P of
an individual sample being sterile is given by

log(- loge P) = loge No- kt, No ei k = 1.

and if e-kt is small, as it is when No is large compared
to N (by (1)),

loge P = -Noe-kt (9)

which is the approximation obtained by substituting
- e-kt for x in the first term of the well-known series

2 3

log-(1+ x) = x - 2 + - < x < 1. (10)
2 3

Ordinarily only the first term will be significant; a
borderline example will be illustrated later (in footnote
1 of Table 6). From (9) and (1)

p = e-Noe8kt -N

P=e =~-e (11
Inasmuch as p = r/n is an estimate of P

= loge (n/r)

which is equation (3). Furthermore P = e- is the
term of the Poisson probability distribution for zero
occurrences where N is the expected or mean number
of occurrences (surviving organisms).
The probability of obtaining r sterile samples in a

group of size n, is given by the general term of the
binomial probability distribution,

Pr{r} = pr(l _ p)n-r (12)r!(n - r

It is apparent that Pr {ri}, the probability of obtain-
ing a particular value of r, will depend on ri, n, and
through (11) on No, t, and k or D.

DEMONSTRATION OF BIAS IN THE UNWEIGHTED
AVERAGE METHOD

As an arbitrary example to illustrate the bias one
may take loge No = 10 (that is, No = e'° = 22,070)
and k = 1 (that is, D = 2.3026). Variations in k in-
volve only the units of the time scale, and variations

TABLE 1. Possible values of D of t = 13.20, NO = 00,
k = 1, n = 6 (P = 0.96), and the weighted average

or expected value, De,p
Pr(rl Dr Prtrl -Dr

0.0000 0.0000
0.0011 2.932 0.0032
0.0204 2.787 0.0569
0.1957 2.597 0.5082

0.2172 0.5683

n-I

x
(Pr r =- 0 = 2.616

Dep= n-I 0.2172
3 PrIrI
r-1

* Calculated by (4).

in No (except to small values) involve only the dis-
placement of the critical range of sterilization on the
time scale (figure 1). One might calculate P for various
values of t by (11) as a preliminary to calculating
Pr{rJ by (12). More conveniently, one may take arbi-
trary values of P and calculate the corresponding
values of t and Pr{ r}. Tables of the latter have been
published (National Bureau of Standards, 1950;
Harvard Computation Laboratory, 1955). The results
of such a series of calculations for n = 6 are shown in
figure 1. The asymmetrical character of all of the
curves may be noted.

Consider the period t = 13.20. The probabilities of
obtaining 5 or 4 sterile tubes are appreciable; of ob-
taining 3, 2, 1, or 0 are vanishingly small. The prob-
ability of obtaining 6 sterile tubes is large, and if this
happens a value for D is not calculated. The expected
value for D, if one is calculated, is obtained as
a weighted average as is illustrated in table 1. Values
obtained in this way are plotted to give the expected
value of D as a function of the time of heating (figure
2). For short periods of heating Dexp is less than the
theoretical D, Dth; for long periods Dexp is greater
than Dth. Clearly this arises from rejecting observa-
tions in which r = 0 or r = n. For short periods the
rejected observations are mostly r = 0; for long periods,
mostly r = n.
Because of the asymmetry of the curves of figure 1,

the 50 per cent sterility time (P = 0.50; t = 10 -
loge (-loge 0.5) = 10.367) does not give an expected
D that is equal to Dth, 2.3026; instead Dexp = 2.298
by the method of table 1, or 0.2 per cent lower than
2.3026. By successive approximations, the time giving
Dexp = 2.3026 was found to be 10.610 (P = 0.581)
for n = 6. The further t is from this time the greater
is the departure of the expected D from the Dth . For
n = 6 the rate of change of Dexp with time approaches
0.2 per minute, or 8.7 per cent of the theoretical value,
and is approximately 0.12 (or 5.2 per cent) per minute
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Fi(. 2. Expected value of D for n

culated by the "unweighted average"
Weighted departure of the expected
theoretical D = 2.3026 (light lines).

= 6 and 48 when cal-
method (heavy lines).
value of D from the

for a range that embraces 95 per cent of the D values
likely to be calculated. (For larger n the rate of change
would be smaller.) This is in remarkable agreement
with the values quoted by Reynolds and Lichtenstein
for n = 5 to 12, and thus it appears entirely adequate
to account for the effect that they noted with dilution
counts. The bias illustrated would not appear to account
for changes in D value with time when the data are

plate counts, unless dilutions are so arranged as to
give appreciable probabilities of sterile plates.

D0xp is also shown for n = 48 in figure 2. Nearly
correct values for D are to be expected over a wider
time range for n = 48 than for n = 6 but here also the
values calculated for the shortest and longest times are

strongly biased.
The unweighted average method with equal time

intervals is biased to give somewhat too high values for
D. The expected value for the unweighted average D
is obtained as a weighted average of the expected
values for individual time periods; that is, by

2 (Dexp.PrIr - 0, it
Dunw exp = o (13)

E (Pr{r 0,n})n
t=0

where Pr{ r 0, n} gives the probability that some but
not all of the samples will be sterilized at a given time
period (and thus that a value of D will be calculated
for that period). The value of (13) will fluctuate with
the size of the time intervals and the way they happen
to fall on the range of partial sterilization; but as the
size of the time intervals decreases (13) will approach

fDexp.Prlr $O,n}. dt

f Prtr $ O,n). dt

IGoo

_ (Dexp -Dth) Pr{r $ O,n} * dt

f Pr{r $ O, n} * dt

(14)

+ Dth

The right-hand side of identity (14) contains an ex-
pression for the weighted departure from theory, and
this may be evaluated graphically more accurately
than the expression on the left-hand side of (14).
The top integral, the weighted departure, is given in

figure 2 for n = 6; the bottom integral is given in
figure 1. Planimetric evaluation showed that the over-
all bias is about 2.7 per cent too high. If the range of
partial sterilization is curtailed, the bias is greater;
thus, evaluation for t _ 10.61 gave a bias of 6.1 per
cent and more extreme curtailment would give a greater
bias. The weighted departure for n = 48 is also shown
in figure 2; its form is more complex than for n = 6
but here also the overall bias is on the high side.
Although this bias and other defects of the un-

weighted average method (such as the lack of an
estimate of precision) may be negligible in many
applications, it would seem preferable to use a theo-
retically superior method of calculation if the labor
were not increased unduly. Schmidt (1954) suggested
the use of a procedure described by Reed (1936) that
approximates graphically the time corresponding to 50
per cent sterility (in a symmetrical tolerance distribu-
tion). It is superior to the unweighted average method
in that it gives less undue weight to observations at
the extremes of the partial response range. The writer
has found no detailed analysis of this method, but a
closely-related method (Reed-Muench) has been dis-
cussed by Finney (1952; par. 20.8, 20.11, 20.12).
Finney (Chap. 19, 20) has discussed the problem of
estimates from quantal responses very thoroughly.
From the standpoints of mathematical rigor and
efficient experimental design he prefers a maximum
likelihood method. Such calculations may be relatively
tedious, as will be illustrated below; of alternative
methods the Spearman-Karber appears to be most
applicable to data of the form usually collected.

THE SPEARMAN-KXRBER METHOD

This method for the reduction of binomial data has
been discussed critically by Finney (1952; paragraphs
20.6, 20.11, 20.12). It may be used to estimate the mean
sterility time, t,, , of a sample and the variance of this
estimate, Vtm, by the formulae given in table 2. The
estimates of D and k (or of confidence limits for D and
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TABLE 2. Formulae for the Spearman-Kdrber method;
estimates of the mean sterility time, tm , and its

variance,* vim
General case:

tm 2 (4+1 + tiflr i r

vt^=~~ nj+nh1).( i(lP
i-ti\ ti+ Pil/1-i

t;-l ti+l)2( ri(ni - ri)

Successive periods differ by equal time intervals, d:

d " r
tm = tu + - - d Z -

2 i-..ni

V u
P(P,( - Pi) U (ri(n,_-ri)

All periods involve an equal number of tests, n.

tm = 1 (ti+i+ t, (r,0 - ri)
n \2 /

V,. 1- z I t-+ (P (1 -P))
n ,..~ \ 2 /

Both d and n are constant:
d d u

tm = tu + - --, r
2 n i-l

(15)

TABLE 3. Estimation of survival rate constant k (or
decimal reduction time D) by the Spearman-

Kdrber method
Spores of Clostridium sp. PA 3679 in pea puree, No =

2.64 X 104, 120.1C., d = 0.5 minute throughout
(data of O'Brien et al., 1956)

ti

(16)

(17)

(18)

(19)

5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
10.5
11.0

(20)

(21)

Vgm = - 3 (Pi(1- Pi)) = 2 (r,(n - r) (22)n,-l n'(n - 1)

Summations are carried out in theory over all time periods;
in practice, terms beyond a certain time, tu , have no effect.
In formulae that do not involve Pi, tu may be any period
beyond all those that give one or more viable samples. Pi is
the theoretical probability of a sample being sterile at ti,

and pi = i is an estimate of Pi . Better estimates of Pi , for
ni

use with the exact equations for Vt., may be calculated by
(28) by means of a table of loglogs (Finney, 1952, Appendix
Table XVI-see the next section) and k estimated by equation
(25).
The 95 per cent confidence limits for tm are taken as

tm 1 1.96(V,m), (23)

from the normal probability distribution as an approximation
for the distribution of tm .

* The variance is the square of the standard deviation. The
general formula is not given by Finney but it may be obtained
from (15) by a conventional procedure described by Wilson
(1952, p. 272).

k) are obtained by substituting t, (or the confidence
limits for t,,,) in

D = 2.3026 tm _ 4,t
log, No + 0.61 logio No + 0.265

and
k =

log, No + 0.1
tm

An example of the calculation is given in table 3.

(24)

,- /I.rt/ ni1

0/5
1/6
1/6
2/6
5/6
5/6
4/5
5/5
5/5
5/5
6/6
5/5
8.5

t i-6.5
14 4

= _ _ _

6 5
= 3.133

ri/ni-ri)/
fni(ni- 1)

0
5/180
5/180
8/180
5/180
5/180
4/100

0
0
0
0
0

8.5

ti-56.5
28 4
180 100

= 0.1955

Y = log.-
No - kt
(by (29))

1.93
1.18
0.43

-0.32
-1.07
-1.82
-2.57
-3.32
-4.07
-4.82
-5.57
-6.32

P=c=SY
(by (28))

.001

.039

.215

.483

.710

.850

.926

.964

.983

.992

.996

.998
m P(1- P)

ti-0 n

0.1309 0.7933
5X4 6X4

= 0.0396

By (17)

tm= 4,+-d d ri/ni2

= 8.5 + 0.25 - 0.5 X 3.133

= 7.183

And by (18)

V = d2Z (ri(ni - r )/n.(ni - 1))

= 0.25 X 0.1955

= 0.0489

Then

1.96s = 1.96(V)i = 1.96 X .221

= 0.434
and

tm = 7.183 4- 0.434

By (24)

D 2.303 (7.183 + 0.434)
10.181 + 0.61

- 1.53 with confidence limits 1.44 to 1.63

By (2) or (25)

k = 1.50 (95% CL 1.42 to 1.60).

In the preceding calculations t. was taken as 8.5; a higher
value would have given the identical results.

Alternatively V maybe calculated by (18) with Pi estimated
by (28); this gives V = 0.0396 and k = 1.42 to 1.59.

Formulae (24) and (25) are taken from (4) and (2)
(25) with log, N = log. (-log, Pm) = 0.61 corresponding to

Pm = 0.58. This value for Pm was obtained by esti-
mating the bias of the Spearman-Karber method for

214 [VOL. 4



ESTIMATION OF DECIMAL REDUCTION TIMES

TABLE 4. Maximum likelihood estimation of k after
loglog transformation of response (data as in

table 8)

ti ri/-vi1i Yi w

5.5 0/5 1.9 -0.15 2.05 0.047 (i.e.,} X 0.056)

6.0 1/6 1.2 1.09 0.11 0.413
6.5 1/6 0.4 -0.17 0.57 0.646
7.0 2/6 -0.3 -0.41 0.11 0.500
7.5 5/6 -1.1 0.49 -1.59 0.281
8.0 5/6 -1.8 -0.10 -1.70 0.152

8.5 4/5-2.6-1.86 -0.74 0.060 (i.e., X 0.072)
5

9.0 5/5-3.3 1.02 -4.32 0.030 (i.e., X 0.036)

9,.5 5/5 -4.1 1.01 -5.11 0.014 (i.e., 6 X 0.016)

10.0 5/5 -4.8 1.00 -5.80 0.007 (i.e., 6 X 0.008)
10.5 6/6 -5.6 1.00 -6.60 0.004

11.0 5/5 -6.3 1.00 -7.30 0.002 (i.e., 6 X 0.002)

Z, witi wiy wi =2.156
= 14.806 = -0.467

By (29), Yi = loge No -kti = 10.18 - 1.50 ti . One decimal
place in Yi ordinarily suffices.

The working deviate q is obtained from Y, and Pi =
'i

by interpolation in Finney's Appendix Table XVII by means
of formulae 21.60, 21.61, and 21.62, p. 577. The working loglog
yi is obtained by

y Y=-i 7. (30)

The weighting coefficient wi is obtained from Yi by inter-
polation in Finney's Appendix Table XVII. When ni is not
constant it is convenient to adjust wi to a common basis

by multiplying wi by - , as has been done in the table with
n

n = 6, and using n in the equation for variance (34).
By (31),

(log. No): w - w, ys
2; witi

10.18 X 2.156 + 0.467
= 1.514

14.806

This estimate may be assumed not to differ sufficiently from
the Spearman-Karber estimate to warrant another cycle of
calculation. If it were thought to differ sufficiently another
cycle of calculations starting with Yi = 10.18 - 1.514 ti could
be made, and in any event it would serve as a check on the
previous computation.

Conformity of the data to the binomial distribution should
be checked next. The number in each group, ni , is too small
to make the chi square test, (32) or (33), appropriate. A test
by means of confidence limits for Y is illustrated in the first
paragraph of the last section of this paper. None of the con-
fidence limits for k estimated in this manner for the individual
time periods are inconsistent with the loglog estimate of k;
thus, there is no evidence of nonconformance to the binomial
distribution. The test can be made very rapidly inasmuch as
it need be applied only to the most suspected periods; for
example, t = 6.0 and 8.5 in this table.

TABLE 4.-Continued
Assuming No is known exactly, the theoretical variance

for k, by (34), is

Vk= =;w .5
0.00164.n(= uW ti)2 - 6(14.806)2

The 95% confidence limits are given by

k + 1.96 Vi = 1.52 4 0.08 = 1.44 to 1.60.

The significance of this estimate is discussed in the text, and
incorporation of the variance of log, No is illustrated in the
first footnote to table 6.

the limiting case of infinitesimally small equally spaced
time periods and the data of figure 1. Equation (17)
then becomes

tm = tu - P dt.
t=0

(26)

Planimetry of the integral, shown in figure 1, gave 4,, =
10.61 and thus Pm = 0.58 by (11).

It is preferable that successive time periods be fairly
close together, that the number of samples at each
period and the intervals between successive periods be
constant, and that the range of partial sterilization be
bracketed completely. The requirement for a con-
siderable number of test periods throughout the partial
sterilization range implies that many tests will be made
at times that do not yield the most information. If the
response range can be predicted well, the maximum
likelihood (loglog) method described below may allow
enough saving in experimentation to compensate for
the more laborious computations.

MAXIMUM LIKELIHOOD ESTIMATION OF k AFTER
LOGLOG TRANSFORMATION OF RESPONSE (THE

LOGLOG METHOD)
Finney has discussed the general problem of com-

puting biological assays by estimating the parameters
of "tolerance distributions," whether real or assumed
because of the usefulness of the mathematical form,
through transformations to provide a linear dependence
of a function of the response on a function of the dose.
Thus

Y = a±+ox (27)

where Y is the transformed response (the "response
metameter"), x is the transformed dose, (8 is the
parameter of the tolerance distribution that is de-
termined by the units of the dose scale, and a is the
parameter that is determined by the position of the
partial response range on the dose scale.
The tolerance distribution of samples of micro-

organisms that follow exponential survival when
exposed to heat is given by (11) which may be written
as

log. (-log. P) = log. No- kt (28)

1956] 215



J. C. LEWIS

which is identical in mathematical form to (27). The
first term, which will be denoted as Y, is a response
metameter named the loglog. It was proposed by
Mather (1949) who gave the solution of (27) for both
a and Il. Finney (paragraph 21.5) has illustrated the
solution of (27) for a dilution count; in this case ,B is
given by loge of the known dilution ratio, and a =

loge No is estimated. In its simplest form, the estimation
of decimal reduction times involves the complementary
problem of estimating # (that is, - k) where a = loge No
is known. A transformation of dose is not necessary;
that is, x = t. The computations are somewhat more
involved than those involved in the dilution count, and
are illustrated in table 4 with the same example that
was used to illustrate the Spearman-Kairber method
(table 3).
The method consists of successive cycles of computa-

tion that yield estimates of k that approach the theo-
retical maximum likelihood estimate asymptotically. A
good guess for the initial estimate may eliminate one or
more cycles of the calculation. Thus it may be desirable
to make an initial estimate by the Spearman-Karber
method. This estimate of k, 1.50, is used for the first
cycle of computation shown in table 4. In the first
column is recorded the time of heating; in the second
column the observed proportion of sterile samples,
Pi = ri/n ; in the third column the initial estimates of
Y which are calculated by

Y = log, No - kt (29)

Other methods of obtaining the initial estimates of Y
are discussed by Finney. In columns 4, 5, and 6 are
given the "working deviate" q, the "working loglog"
yi, and the "weighting coefficient" w1.

These columns provide the material for the first cycle
of computation. In the formulae now to be given n will
be assumed variable inasmuch as the simplified formulae
for n constant will be obvious. The following sum-
mations (over all test periods) are required: Eniwi,
EnXwiti, Eniwiyi. The sign of yi must be retained.
The revised estimate of k is given by

k - log, No Enjwi- Eni wiyi (31)
Eni wi ti

This value of k is used to compute new values of Yi
by (29). A revised estimate of k is obtained by a new
cycle of computation, and the process is repeated until
the change in successive estimates of k becomes
negligible.
When a good estimate of k has been obtained the

homogeneity of the data may be tested by

2 E 7ni(ri-E(rX2
X1- = E(ri)(ni - E(ri)) (32)

where the summation is carried over the v periods

tested and E(ri) is the expected value of ri, n2Pi . An
approximate expression for (32) is

X2-l = fliWi E-_(ni Wi yi)E niWi

+ k [ niiyi ti ( niwiyi)( niwiti)]~~~~Eniwi
(33)

The probability of x'-, is determined from a chi square
table for v - 1 degrees of freedom; if the value was
improbable the individual terms of (32) should be
inspected to see if the contributions from periods with
E(ri) less than 5 are unduly large. If so, small classes
may be combined (with a reduction in degrees of free-
dom) or exact binomial confidence limits may be calcu-
lated as described in the final section. With n as small
as in table 4 the latter procedure is preferable and is
illustrated in table 7.
The test with confidence limits for individual periods

would not be expected to disclose small systematic
deviations from the exponential survival rule unless n
were large. A qualitative judgment might be made by
plotting a large number of confidence limits, and in-
specting for systematic trends. If the discrepancies
were non-systematic but abnormally frequent (see the
last section of this paper), a reinvestigation of the ex-
perimental procedure would appear to be in order.

Confidence limits of k for valid data may be obtained
from the expected variance of k, Vk, for the distribution
assumed and the tests made by

Vk = Eniwi/(Zniwiti)2. (34)

Inasmuch as this is not an empirical estimate of
variance, its use should be restricted to data that meet
the validity test. Confidence limits are calculated by
the normal distribution, or more conservatively by the
t distribution with degrees of freedom equal to the total
number of samples in the partial response range
diminished by the corresponding number of periods
tested.

It has been assumed that No is known exactly,
inasmuch as it ordinarily is determined independently
and thus theoretically to any desired accuracy. A more
common case is that No is indeed constant (pipetting or
related errors are negligible) but is not known with high
precision. This is true of the data of tables 3, 4, and 6.
The confidence intervals shown are suitable for com-
paring treatments (presence or absence of subtilin;
relative initial number of spores), but they fail to
include the contribution of variance of the estimate of
loge No, Vlog6N0 . This is accomplished by the equation

Vk = (nw) [Vlog,,No + E (35)

=E(ni nwi 2 E niW i
(35

*\E r Witi! (SV1OVNO+ 2tD
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If both k and loge No must be estimated from the
binomial data (see Mather, 1949) the precision of the
estimates will be greatly reduced.
The loglog method of estimation of k with a single

time period gives a result identical with that given by
the unweighted average method. Thus k is obtained
directly from (31) by setting

y = Y = loglog p = loge loge (n/r). (36)

(Finney's Appendix Table XVI and National Bureau
of Standards 1953, table 2, give this function.) Then

k loge No- y logeN0 - loge loge(n/r) (37)
t t

which may be obtained by combining equations (4)
and (2) of the unweighted average method. The
variance for the loglog estimate, which would be equally
appropriate for the single period of the unweighted
average method, is

Vk -2 (38)nwt2

It may be seen (by Finney's Appendix Table XVII or

in the figure given by Mather) that (38) will be minimal
for p equal to 0.20 approximately; that is, the estimate
will be most precise for this proportion of sterile
samples. It is the essential distinction between the two
methods that varying reliability of the data is taken
into account in the loglog calculation but not in the un-

weighted average calculation.
Thus it becomes clear why use of the loglog method

can lead to far more efficient experimentation if the out-
come can be predicted fairly well. Suppose that all of
the tubes for the data of table 3 (and 4) had been
utilized at the period t = 6.5. The variance of the
estimate of k would have been approximately

Eniw. = 6 X 2.16 =
E nw 66 X 0.65

as great; that is, the confidence interval would have
been less than six-tenths as wide. Put another way, the
omission of periods t = 8.5 and longer would not have
reduced the accuracy of the result appreciably. The
advantage of reducing the number of dose levels in
speeding the computations will also be noted.
Data that show a sharp cutoff have not been reducible

satisfactorily by the unweighted average method but
they present no problem to the loglog method. Consider
the arbitrary example shown in table 5. The data for
cases I and II have been chosen as reasonably coming
from the same population with the respective guesses
of appropriate time periods. Not only are the results
equally, readily, calculable but their reliabilities are

virtually identical.
Similarly, data from curtailed response ranges offer

no difficulties for the loglog method. Such data give

biases in the unweighted average method, and their
effect on the Spearman-Karber method is not known.
A more complicated situation arises where negative

exponential survival is not observed; that is, where
equation (1) does not hold. A common type of de-
parture, illustrated by a sagging curve rather than a

N
linear relationship of loge No vs. time, is given by a

population mixed with respect to resistance (k (or D)
variable). This phenomenon has been discussed by
Rahn (1945, p. 19). It is demonstrated in a figure given
by O'Brien et al. (1956) for heat killing of Clostridium
sp. PA 3679 with various initial numbers of spores.
Part of the original data have been treated by the vari-
ous methods discussed in this paper with the results
shown in table 6.
Where exponential survival holds (the "controls" of

table 6) the agreement of the three methods is very
close. Where exponential survival does not hold
("subtilin present" of table 6) the agreement is very
poor for the lowest initial spore number. The confidence
limits calculated in the various ways shown also agree
well except with subtilin and the lowest initial spore
number. Exact confidence limits for k calculated from
the binomial probabilities (as outlined in the next
section) for individual time periods agreed within the 5
per cent level with the confidence limits shown in table
6 in all cases.
The overlapping of the confidence ranges of k for

various No in the controls and the failure to overlap in
the presence of subtilin demonstrates a departure from
exponential survival in the latter case but fails to
demonstrate a departure in the former case.

It does not appear to be possible to make a sensitive
test for conformance to exponential survival by any
mathematical device when only one inoculum level

TABLE 5. Loglog transformation for data with a sharp
cutoff (arbitrary example; loge No = 5; n = 6)

r

Case I Case II

5 0
6 0
7 0
8 0
9 3
10 6
11 6
12 6
13 6
14 6
15 6

Case I: k = 0.599 Jh 0.080
Case II: k -0.594 ± 0.079
Combined data: k = 0. 0.597 4 0.057
(95% confidence intervals)

19561 217



J. C. LEWIS

TABLE 6. Comparison of methods for calculating survival rate constants (extension of the data of tables S and 4)

Estimations of k with 95% Confidence Intervals
Initial Number of Spores Original Datat(No)* Unweighted SpamnKrbrLgo

averaget Spearran-Kirber Loglog

Controls
2.64 X 101 0.5 (by 0.5) to 6 1.24 1.33 1.28

0, 0, 0, 0, 2, 5, 4, 6, 6, 5, 6, 6 (1.18-1.53)§ (1.09-1.47)
6

(1.17-1.55)¶

2.64 X 103 3.5 (by 0.5) to 9 1.46 1.43 1.43

0, 0, 1, 0, 0, 3, 6, 5, 6, 6, 5, 5 (1.35-1.51)§ (1.34-1.52)
6 5 6 5

(1.34-1.53)¶

2.64 X 106 5.5 (by 0.5) to 11 1.49 1.50 1.52

0, 1, 1, 2, 5, 5, 4, 5, 5, 5, 6, 5 (1.42-1.60)§ (1.44-1.60)
5 6 5 6 5

(1.42-1.59)¶

Subtilin present
2.64 X 101 0.4 (by 0.2) to 2.6 5.31 5.82 6.04

1, 4, 3, 6, 5, 6, 6, 6, 6, 6, 6, 6 4.75-7.54)§ (4.84-7.24)
6

(4.92-7.14)¶

2.64 X 10 1.8 (by 0.2) to 4 3.12 3.09 3.18

0, 1, 1, 0, 3, 3, 4, 4, 5, 5, 6, 5 (2.88-3.33)§ (2.98-3.38)
5 6 5 6 5 6 5

(2.92-3.29)1¶

2.64 X 104 2.8 (by 0.2) to 5 2.97 2.99 3.05

1, 0, 2, 1,3, 3, 5, 6, 5, 6, 6, 6 (2.83-3.16)§ (2.90-3.20)
5 6 4 6

(2.86-3.13)T
* For comparison of estimation methods and experimental treatments in this table, No has been assumed known exactly from

independent determinations. If absolute values for the confidence intervals were desired it would be necessary to introduce the
variance of log. No by (35). With low No the Poisson variance of No (which is equal to No) for equal volumes of the sample be-
comes important for relative values of confidence intervals such as have been calculated here. Inserting the Poisson component

of variance of loge No, N in (35) gives

Iniw1 2t 1 1
Vk =Kniwi4) (N + n ) (39)

For N = 26.4 in the control group

/15.2 2
Vk =ji-)(0.038 + 0.066)

(40.5)
which gives a confidence interval of :1:0.24 instead of the 40.19 shown in the table. The effect is much less marked in the other
cases.

The accuracy of the approximation involved in equation (9) may be considered here. Retention of the second term of the ap-
proximation; that is,

log. P =-No (ekl +

and calculation of the Spearman-KaLrber estimates of k with No = 26.4 gave values that differed from those shown in the table
by less than 0.5%.
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TABLE 6.-Continued
t Note that the third code given below expresses the data given in table 3.

2.3026
1 By k = f: where bu.. is computed by (4) and (5). More simply, byfunwo

i41 clog. No-log, log.I )

§ Calculated as described in table 3, using ri and ni in (18).
¶ Calculated as described in table 3, using (18) with Pi estimated by (28).

(40)

(No) is available. By far the best procedure is the use of
widely-separated values of loge No .

CONFIDENCE LIMITS FOR BINOMIALLY
DISTRIBUTED DATA

It is sometimes necessary to check in detail the basic
assumption of a binomial distribution as well as the
conformance to an assumed relationship of P to t. For
tests of exponential survival it is convenient to have the
confidence limits of Y = loge (- loge P) rather than
the confidence limits of P. These are given for n < 16,
a = 0.05 and 0.01, in table 7. An example of their use
follows: From the data of table 6, take the case of
No = 2.64 X 103, subtilin present, t = 2 minutes,
r/n = 6 (that is, one of six samples was sterile). Is this
result consistent with the estimations of k shown in
table 6? The confidence limits for Y, a = 0.05, are
1.56, -0.61. Rewriting equation (29)

k loge No- Y (46)
t

where j indicates one of the confidence limits. Then

7.88 - 1.56
k____=_ = 3.16

2

7.88 + 0 _61+0.61=4.242

Similarly for a = 0.01

ki = 3.02, k2 = 4.46

By comparison with the confidence intervals of table 6
it is seen that an estimation from this portion of the
data, representing a relatively short time of heating,
does not depart from the estimations from all the data
with significance even at 5 per cent.

Confidence intervals have been calculated for the
data of Pflug and Esselen (1954), for which n = 48,
because the bias in the unweighted average method of
calculation that they used is inadequate to account for
the deviations that they found from predictions based
on exponentially decreasing survival. The nature of the
discrepancies become more clear if the probability that
an individual spore survives is plotted on a logarithmic
scale against time of heating on a linear scale. This

probability, H, is given by the ratio of the final to the
original number of spores; by (1) and (9)

log. II = log. (N/No)
= -kt = log. (-log. P) - log. No

= Y - loge No.

(47)

By substituting the confidence limits for Y in (47) the
99 per cent confidence intervals for loge H shown as
vertical bars in figure 3 were obtained. Those that
correspond to ri = 0 or ni are unbounded on top or
bottom. The diagonal lines through log., H = 0 give
predicted values of log, II for loglog estimates of k.
As Pflug and Esselen point out, the data deviate

markedly from expectation for exponential survival. It
is more pertinent, however, that the data also deviate
markedly from expectation for a binomial distribution.
Three discrepancies will be detailed. One may first
consider the confidence intervals marked A correspond-
ing to the times 0.0562 and 0.0599 and No = 120. No
reasonable course for log. II could pass near both of
these intervals. On the reasonable assumption that
log. II = -90.65t in this local region the probability
of obtaining a value of r as low as that observed (0) at
t = 0.0562 and a value as high as that observed (45) at
t - 0.0569 would be infinitesimal, much less than 10s4.
As a matter of fact, no reasonable course for log, H
can be drawn through either one of these confidence
limits and the others for No = 120.
Even more marked discrepancies are apparent

between sets of data for the various initial numbers.
Attention is directed to the regions B and C that are
bounded roughly by dotted lines. Region B has at least
10 confidence intervals that are inconsistent with any
reasonable single-valued function for log. H; region C
has at least 7. If it be assumed that the initial concen-
tration of spores was not known, marked changes in the
dilution ratios (that is, to less than A instead ofi
between No = 120 and No = 104) would have to be
assumed to reconcile region B.

It perhaps is idle to speculate further as to the
nature of the extraneous factors that have given these
anomalous data; they point up the need for statistical
control even with an experimental setup as apparently
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ESTIMATION OF DECIMAL REDUCTION TIMES

simple as this onie. Certainily the data cannot be con-
sidered to demonstrate a trend in D values calculated
by the unweighted average method that is greater than
the inherent bias in this method.

It must be emphasized that the anomalies in the
Pflug and Esselen data are striking because fairly large
numbers of tests were run. These authors correctly
point out that large numbers are required for narrow
confidence limits; they appear to assume that large
numbers guarantee high confidence. There is no reason
to assume that other experiments of this type done with
fewer numbers are not subject to similar disturbances,
in the absence of a demonstration of statistical control.
The many pertinent biological factors are beyond the
scope of this discussion.
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SUMMARY
In connectioin with the estimationi of deciimal re-

duction times (D values) for populations that decrease
exponentially with time ("logarithmic order of death"),
the calculation of D for individual times of heating from
binomial data (dilution endpoint counts) gives an
apparent dependence of D on time of heating. It is

Time In Minutes

FIG. 3. Exact binomial confidence limits (99 per cent)

for the data for Pflug and Esselen (1954). The diagonal lines
represent the loglog estimates of k.

demonstrated that the apparent dependence arises
from the bias obtained by rejecting observations where
all samples show growth (short periods of heating) and
where no samples show growth (long periods of heating).
Preferred methods of calculation (Spearman-Kiarber
and loglog methods) are illustrated.
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